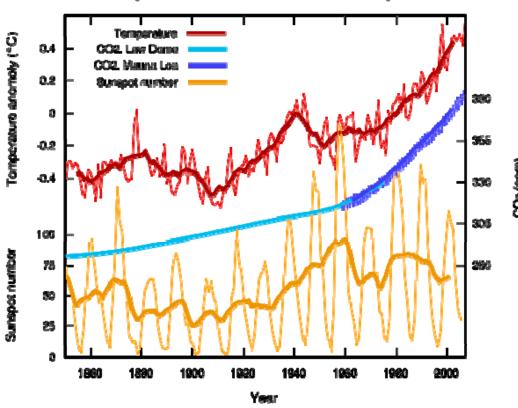
A Closer Look at Energy Performance of Buildings: Simulated vs. Measured

Tianzhen Hong, PhD, PE
March 3, 2011
Simulation Research Group
Lawrence Berkeley National Laboratory

Acknowledgement

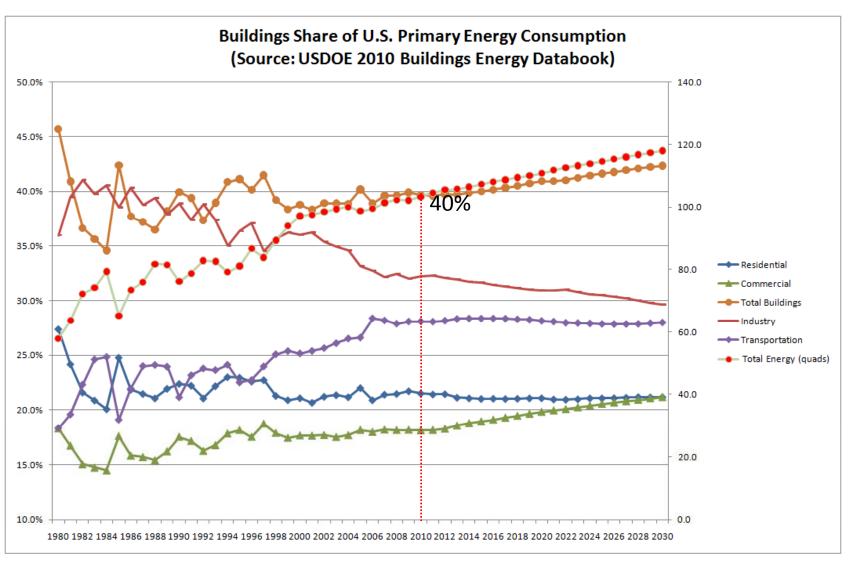
My research and this presentation benefited from projects I worked with other groups:

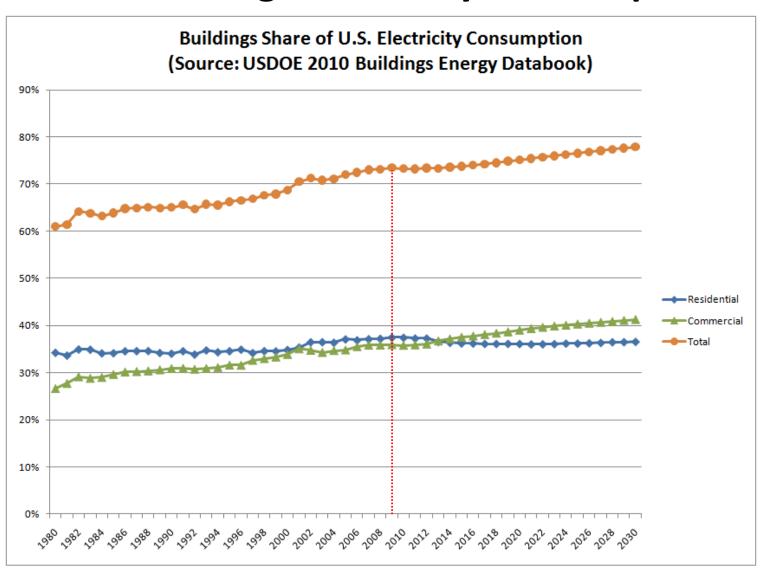
- Windows and Daylighting Group
- China Energy Group
- Lighting Systems Group
- Applications Team
- Commercial Building Ventilation and Indoor Environmental Quality Group
- Commercial Buildings Group


Outline

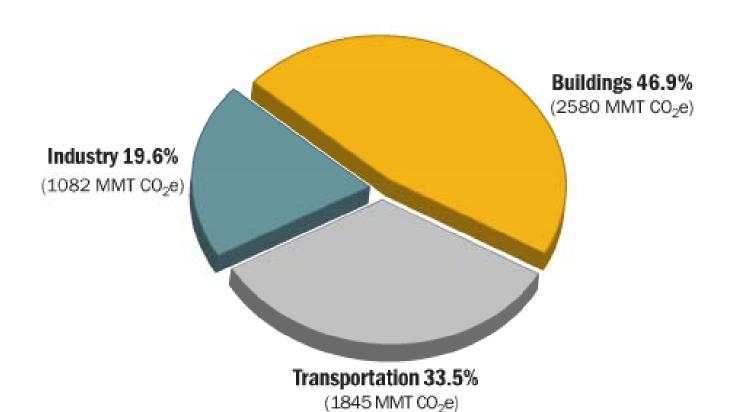
- The Big Picture
- Energy Performance of Buildings
 - Measured and Simulated
- Discrepancies between Simulated and Measured Energy Performance
- Two Case Studies
 - Space Cooling Energy Use of Data Centers
 - Space Heating Energy Use of Office Buildings
- Better Simulation

Global Climate Change




Source: WWF

Source: Solar Center, Stanford


U.S. Primary Energy Consumption

U.S. Buildings Electricity Consumption

U.S. CO₂ Emissions

U.S. CO₂ Emissions by Sector

Source: @2010 2030, Inc. / Architecture 2030. All Rights Reserved. Data Source: U.S. Energy Information Administration (2009).

Energy Efficiency is a National Priority

"Each and every one of us can start thinking about how can we save energy in our homes, in our buildings."

President Barack Obama Feb 10, 2009

On February 3, 2011, President Obama announced the **Better Buildings Initiative** - to improve the energy efficiency of existing commercial buildings by 20% by 2020

Energy Performance of Buildings

Why some buildings consumed so much more energy than others with similar functions?

How feasible is it to reach the NZEB goal?

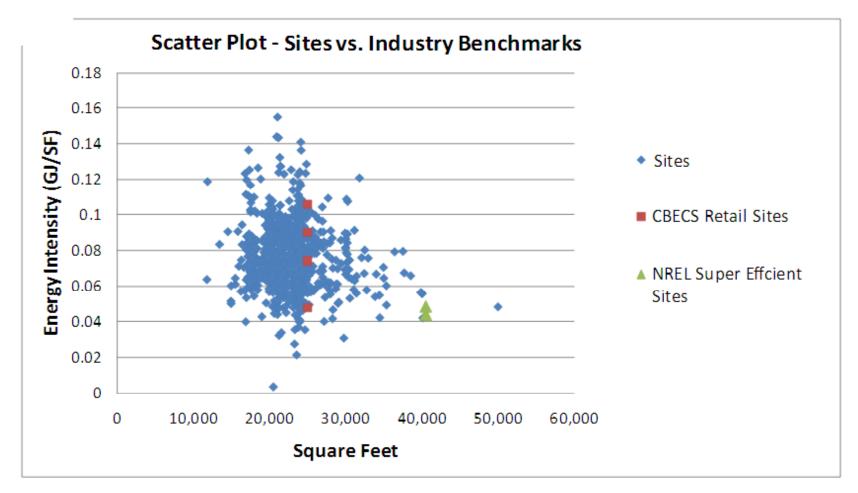
Back to Basics - understanding energy use of buildings is the most important step towards energy savings:

- Where energy is used?
- How much energy is used?
- When energy is used?
- How energy is used?
- Who and why uses the most amount of energy?
- To identify waste, deficiency, and savings opportunities!

Energy Performance of Buildings

Two methods to obtain energy use of buildings:

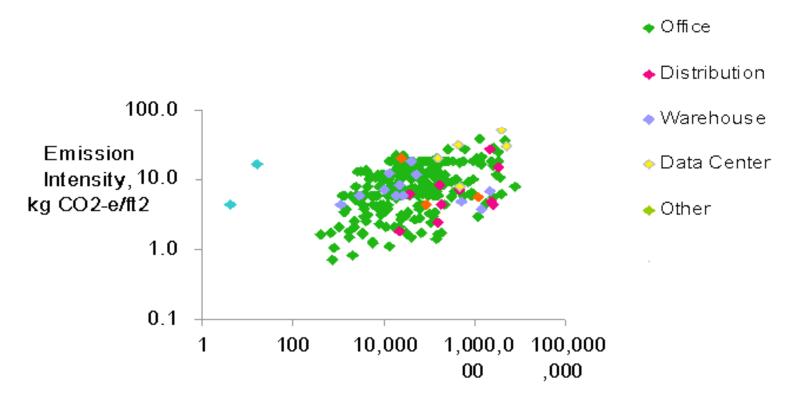
- Measurement
 - Beyond monthly utility bills
 - Real data, 'trust without questions'
 - Can be time-consuming and costly for detailed measurement
- Simulation
 - Provide very detailed results end uses, monthly, subhourly, systems/components/zones levels
 - 'Quick' and cost-effective
 - Questionable results
- Both methods are needed!


Why Need Measurement?

- Real data help understand energy performance of buildings
- Verify energy and demand savings from retrofit and commissioning
- Obtain operational rating, e.g. ASHRAE bEQ
- Obtain LEED certificate for existing buildings
- Sometimes, to help verify or calibrate simulation models
- Other reasons...

Why Need Simulation?

- Evaluate design alternatives to help make better decisions for new buildings
 - Unconventional, innovative low energy designs that cannot rely on rulesof-thumb or previous design experience
- Demonstrate code compliance using the performance path when prescriptive path is not allowed, e.g. WWR >40% in ASHRAE 90.1-2010
- Building energy benchmarking, rating, labeling
 - LEED certification, ASHRAE Building EQ
 - Incentive programs: SBD, EPAct §179D Federal Tax Credit
- Identify and evaluate retrofit measures for existing buildings
- Used in the development of building energy code and standards
- Sometimes to predict actual energy use of buildings


Measured Energy Performance (1)

Profile of Measured Energy Use of Big-Box Retails in US and Canada Source: ICF International

Measured Energy Performance (2)

Emissions Intensity

Total Emissions, kg CO2-e

Source: ICF International

Measured Energy Performance (3)

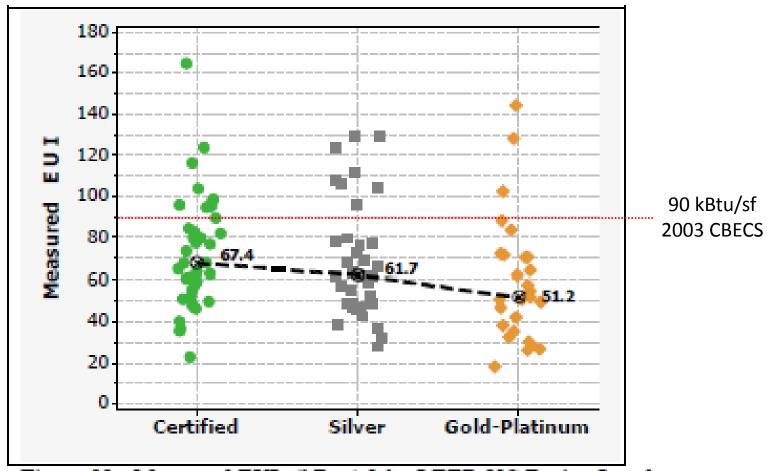
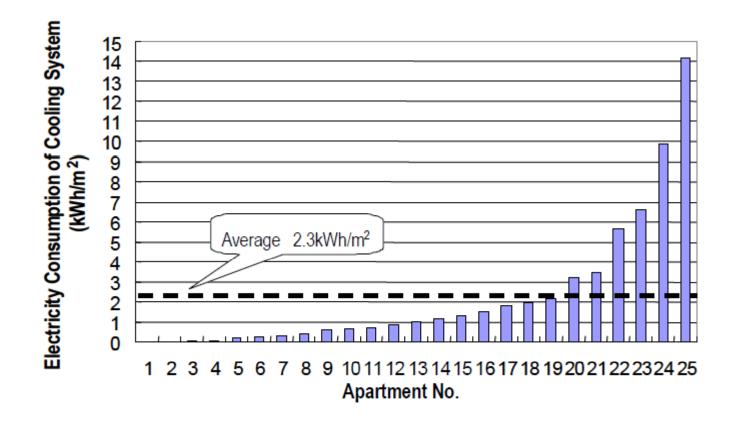



Figure 11: Measured EUIs (kBtu/sf) by LEED-NC Rating Level

Profile of Measured Energy Use of the 100 LEED-NC Certified Buildings Source: Energy Performance of LEED® for New Construction Buildings, NBI, 2008

Measured Energy Performance (4)

Annual household electricity usage of split type air-conditioners in 2006, Beijing, China Source: Y. Jiang & Q. Wei, Tsinghua University

Measured Energy Performance

Why such huge variations? Can building science and simulation community help explain?

- Age of buildings?
- Building designs and constructions?
- Climate?
- Operation and maintenance?
- Human behavior?
- Unknown, but <u>can't be just measurement errors!</u>

Measured Energy Performance

What can help us discover and understand the truth?

- Utility bills monthly energy usage not adequate
- Measured data with rational details and accuracy
 - Sub-metering
 - End uses (e.g. lighting, cooling, heating, plug-loads)
 - System level (e.g. HVAC systems)
 - Equipment/component level (e.g. chillers, boilers, elevators)
 - Floor/space level
 - Occupant level (per person)
 - Sub-hourly interval
 - Accuracy better than 2%
- Energy benchmarking, rating, and labeling
- Standardize energy monitoring and analysis platform

Example Developments

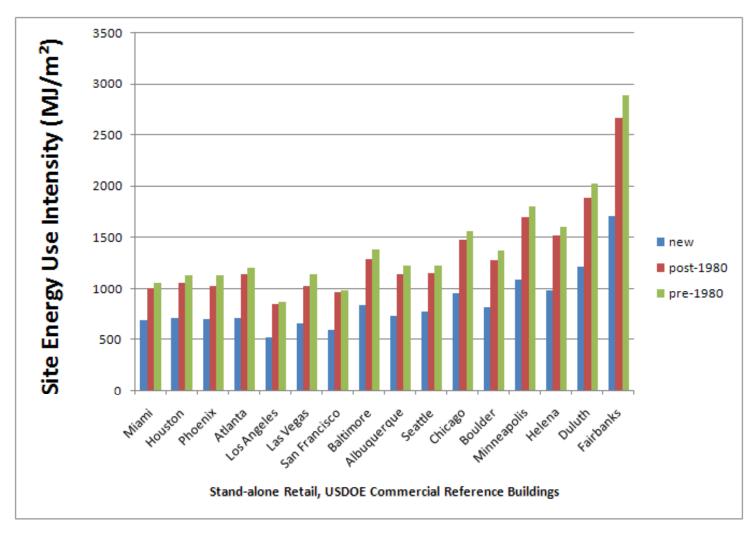
- USDOE LBNL Energy Information System
- California commercial buildings monitoring network
- US/China Clean Energy Research Center on Building Energy Efficiency
- IEA Annex 53 Total Energy Use in Buildings
- ISO Standards

ASHRAE Standards & Guidelines

- ASHRAE Standard 105-2007, Standard Methods of Measuring, Expressing and Comparing Building Energy Performance
- ASHRAE Guideline 14-2002, Measurement of Energy and Demand Savings

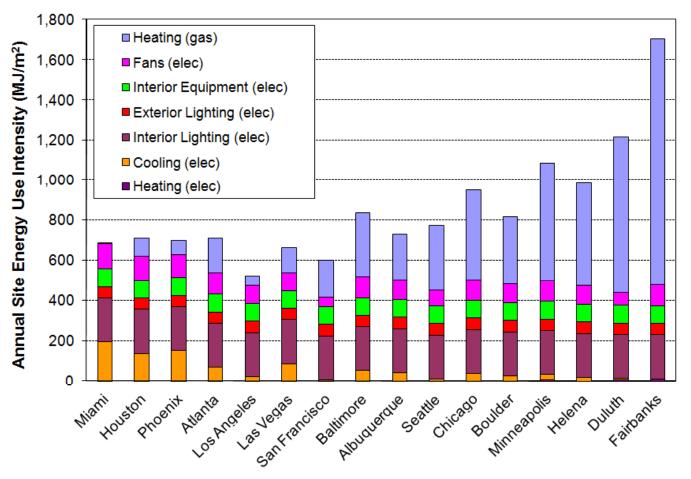
IEA Annex 53

Total Energy Use in Buildings - Analysis and Evaluation Methods


- Subtask A Definition and Reporting
- Subtask B Case Studies & Data Collection
- Subtask C Statistical Analysis
- Subtask D Energy Performance Evaluation

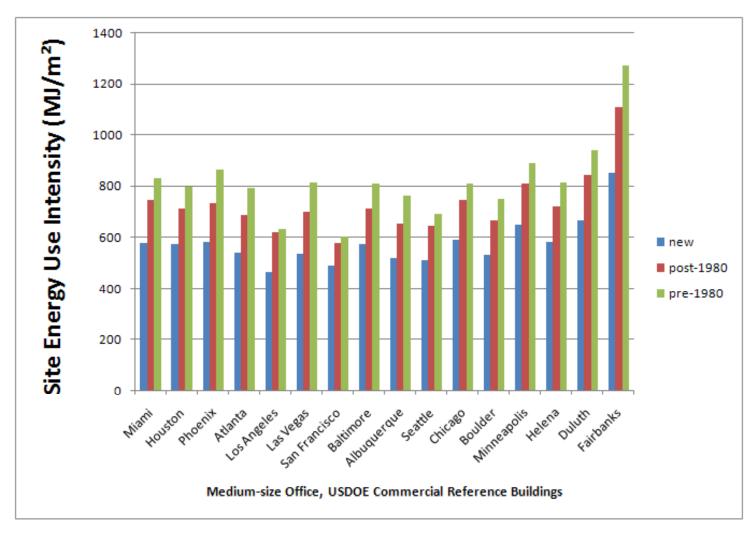
www.ecbcsa53.org

ISO Standards


- ISO 16818 Building environment design -- Energy efficiency – Terminology
 - gives terms and definitions for use in the design of energy efficient buildings
- ISO 23045 Building environment design -- Guidelines to assess energy efficiency of new buildings
 - to assist designers/practitioners when collecting and providing the useful data that are required at different stages of the design process and to fulfill the definitions of the building as prepared by building designers.
- New standards under development by TC 205/163

Simulated Energy Performance (1)

Data Source: USDOE Commercial Reference Buildings


Simulated Energy Performance (1a)

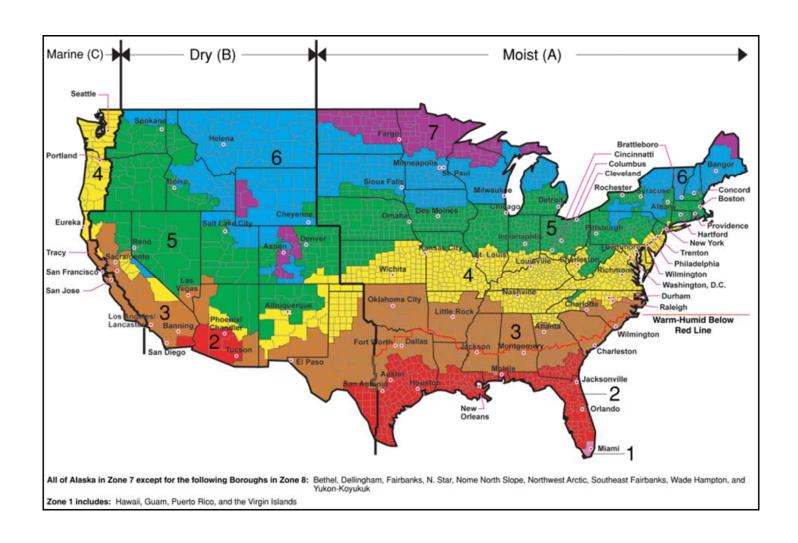
Stand-alone Retail

Source: USDOE Commercial Reference Buildings – new (after 2004)

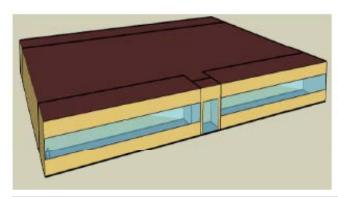
Simulated Energy Performance (2)

Data Source: USDOE Commercial Reference Buildings

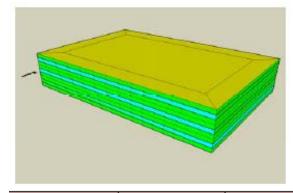
Simulated Energy Performance


USDOE commercial reference buildings (CRBs)

- 16 building types
 covering 70% of the US commercial buildings
- 16 climates (from Miami to Fairbanks)
- 3 construction periods (pre-1980, post-1980, new)
- Based on CBECS, construction practice, code requirements
- Complete EnergyPlus models
- Developed by NREL/PNNL/LBNL


16 Building Types

	Building Activity	Area ft ²	Floors	Source
Office	Small Office	5,500	1	Small Office AEDG
	Medium Office	53,630	3	2003 CBECS
	Large Office	498,588	12	2003 CBECS
School	Primary School	73,960	1	K-12 AEDG
Sch	Secondary School	210,890	2	K-12 AEDG
_	Stand-alone Retail	24,962	1	2003 CBECS
Retail	Strip Mall	22,500	1	2003 CBECS
	Supermarket	45,000	1	2003 CBECS
od	Quick Service Restaurant	2,500	1	2003 CBECS
Food	Full Service Restaurant	5,500	1	2003 CBECS
Lodging	Small Hotel	43,200	4	Highway Lodging AEDG
Γοφί	Large Hotel	122,120	6	2003 CBECS
_	Hospital	241,351	5	2003 CBECS
Health	Outpatient health care	40,946	3	Health Care AEDG
Storage	Warehouse	52,045	1	Warehouse AEDG
Resi- dential	Midrise Apartment	33,740	4	PNNL


Climate Zones

Two Selected Buildings

Floor area (ft²)	Number of Floors	Aspect Ratio	WWR	
24,695	1	1.28	7%	

Floor area (ft²)	Number of Floors	Aspect Ratio	WWR	
53,600	53,600 3		33%	

Stand-alone Retail

Medium-size Office

Now the Challenge

Measurement & Verification of energy use in completed commercial buildings tend to show large discrepancies between simulated and measured performance!

Energy Performance of Buildings Simulated vs. Measured (1)

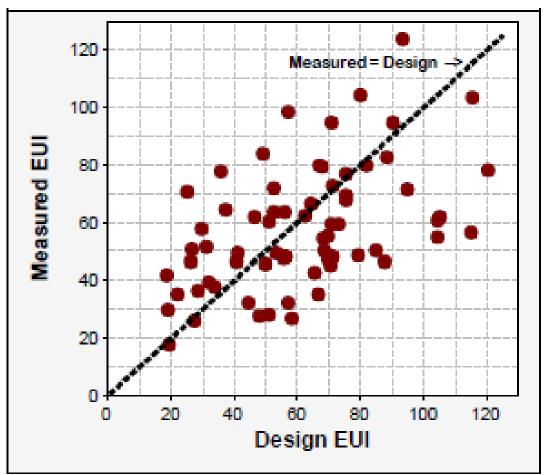


Figure ES- 4: Measured versus Design EUIs All EUIs in kBtu/sf

Source: NBI Study 2008

Energy Performance of Buildings Simulated vs. Measured (2)

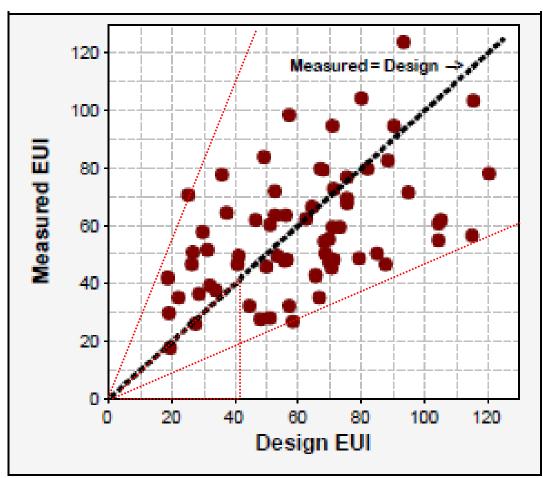
Table 8. Percent Discrepancy Comparison

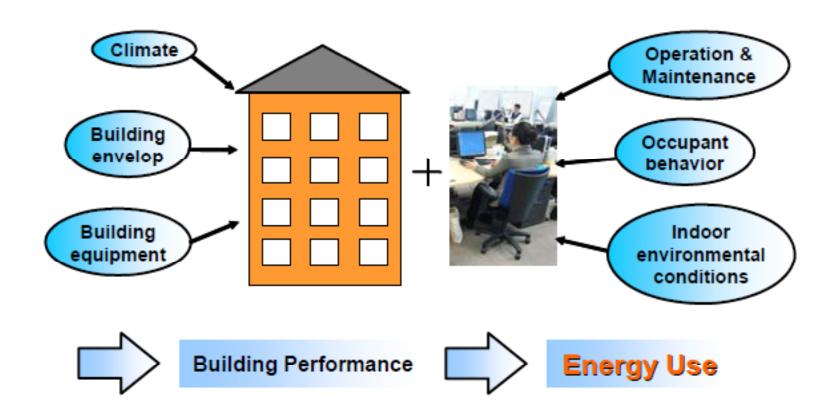
Sites	Electric		CHW		HW		Total	
Oites	Level 1	Level 2	Level 1	Level 2	Level 1	Level 2	Level 1	Level 2
Wisenbaker Engineering Resear Center (1999)	-27.3%	-31.2%	43.8%	49.0%	97.8%	93.9%	32.3%	33.9%
Wisenbaker Engineering Resear Center (2004)	-33.3%	-37.3%	33.2%	39.4%	95.4%	85.6%	18.8%	20.6%
Harrington Tower	10.6%	-7.6%	-35.6%	-87.2%	85.3%	-97.9%	-2.4%	-48.2%
Wehner Business Administration Building	-73.4%	-42.7%	-25.7%	-77.4%	86.9%	64.6%	-41.0%	-33.0%
John B. Connally Building	-15.0%	-16.3%	N/A	N/A	N/A	N/A	-15.0%	-16.0%

Negative numbers mean over-predict, positive for under-predict Texas A&M, used DOE-2.1E

Mushtaq Ahmad, Charles H. Culp, Uncalibrated Building Energy Simulation Modeling Results, ASHRAE HVAC&R Research, Vol. 12, No. 4, October 2006

Energy Performance of Buildings Simulated vs. Measured




Figure ES- 4: Measured versus Design EUIs All EUIs in kBtu/sf

Source: NBI Study 2008

A few facts:

- 1. Various building types, ages, locations
- 2. Average over all projects not bad
- 3. Max over-predict by 120%
- 4. Max under-predict by **65%**
- 5. Almost all under-predict for low energy designs (red triangle: EUI <= 40)
- 6. Uncalibrated simulated results

Driving Factors of Building Energy Performance

Source: IEA Annex 53
Total Energy Use in Buildings - Analysis and Evaluation Methods

Analysis of Discrepancies (1)

Back to Basics – Energy simulations done for LEED projects were not to predict actual energy use of buildings

Majority of simulations are done to:

- Evaluate and compare design alternatives
- Calculate relative performance to certain baselines (Title 24, ASHRAE 90.1, 189.1, LEED, etc.)
- Code compliance, but
- Not to predict actual energy use/cost

With significant extra dedicated effort simulations can predict actual energy consumption within a reasonable range

Analysis of Discrepancies (2)

	Measurement	Simulation		
Building & Systems	As-built	As-designed?		
Operation & controls	With problems	Perfect w/o problems		
Human behavior	Actual	Simplified too much		
Equipment performance	Actual performance with faults & degradation	Assumed default performance w/o faults or degradation		
Weather data	On-site	TMY2/TMY3		
Internal loads	Actual	Assumed		
Energy uses	All included	Some misc uses may not be included		
New innovative systems		Cannot be modeled. Ad-hoc work-around		
Consistency of accuracy	Very good	Very bad		
Quality controls		Not adequate		

Complexity of Simulation

Case Study - Data Centers

How does EnergyPlus compare to DOE-2.2?

- Data centers with air-cooled DX cooling
- With and without air-side economizer
- Four climate zones San Francisco, Miami,
 Chicago, and Phoenix
- Use EnergyPlus v2.1 and DOE-2.2 v45
- What are surprises and how to address them

Air-Cooled DX Coil Models

User Inputs	DOE-2.2 DX Coil	EnergyPlus DX Coil	
Under ARI rated conditions: Outdoor dry-bulb 95°F, entering dry-bulb 80°F	and wet-bulb 67°F.		
Rated Cooling Efficiency	Yes. EIR = 1 / COP	Yes. COP	
Rated Total Cooling Capacity	Yes	Yes	
Rated Sensible Cooling Capacity	Yes	No	
Rated Sensible Heat Ratio	No	Yes	
Rated Bypass Factor	Yes	No	
Rated Air Flow Rate	Yes	Yes	
Curves to describe DX coil operating performance under non-rated and part-	load conditions		
Cool-Cap-fEWB&OAT (Total cooling capacity as a function of entering wet bulb and outdoor air dry-bulb temperatures)	Yes	Yes	
Sens-Cap-fEWB&OAT (Sensible cooling capacity as a function of entering wet-bulb and outdoor air dry-bulb temperatures)	Yes	No	
Cool-EIR-fEWB&OAT (Cooling efficiency as a function of entering wet- bulb and outdoor air dry-bulb temperatures)	Yes	Yes	
Cool-EIR-fPLR (Cooling efficiency as a function of part-load ratio)	Yes	Yes	
Bypass-Factor-fAirFlow (Bypass factor as a function of air flow ratio)	Yes	No	
Bypass-Factor-fEWB&EDB (Bypass factor as a function of entering wet- bulb and dry-bulb temperatures)	Yes	No	

Results – San Francisco

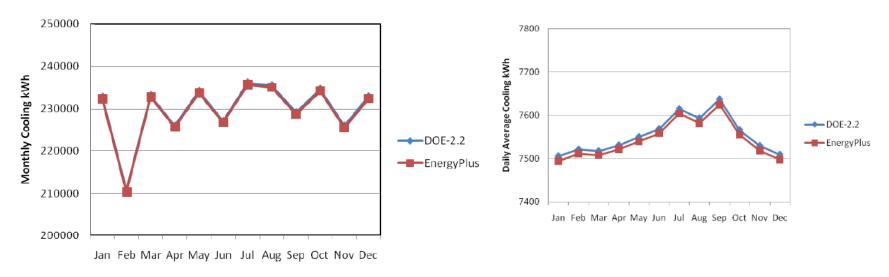


Figure 1 – Monthly Cooling Electricity Consumption for San Francisco Runs without Air Economizer

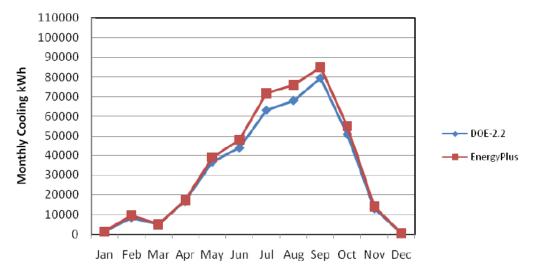


Figure 2 - Monthly Cooling Electricity Consumption for San Francisco Runs with Air Economizer

Results - Chicago

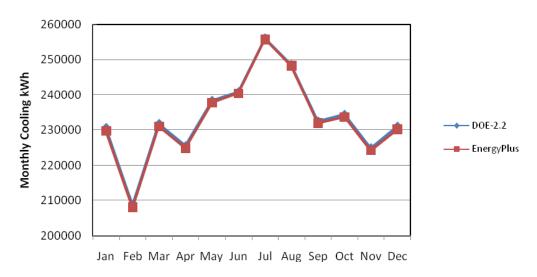


Figure 1 - Monthly Cooling Electricity Consumption for Chicago Runs without Air Economizer

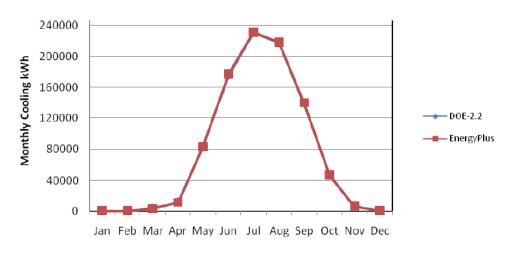
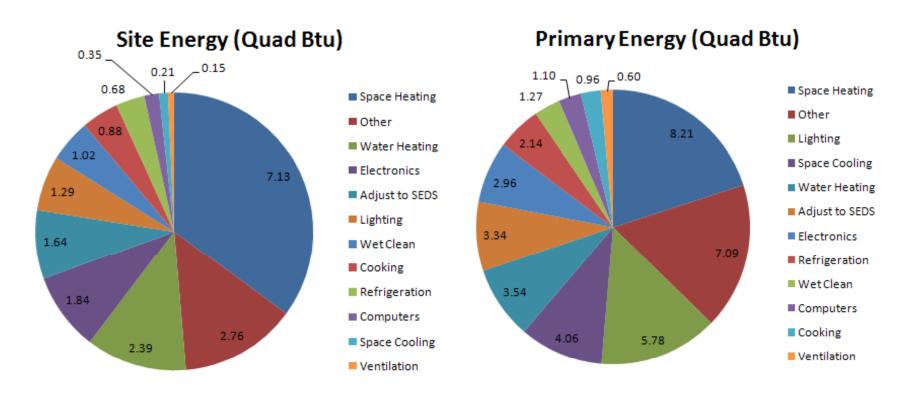


Figure 6 - Monthly Cooling Electricity Consumption for Chicago Runs with Air Economizer

Summary of Findings


EnergyPlus and DOE-2.2 can produce close results if:

- Use same/equivalent equipment size, efficiency, and performance curves
- Use same operating schedules and internal loads
- Use same weather data
- Pay attention to DOE-2 defaults

Case Study - Space Heating Energy Use of Office Buildings

- Space heating is the largest end-use
- Office buildings are the most common building type in US commercial stocks
- Long complaints from the simulation community about simulations underpredicting space heating energy use
- Understand key factors

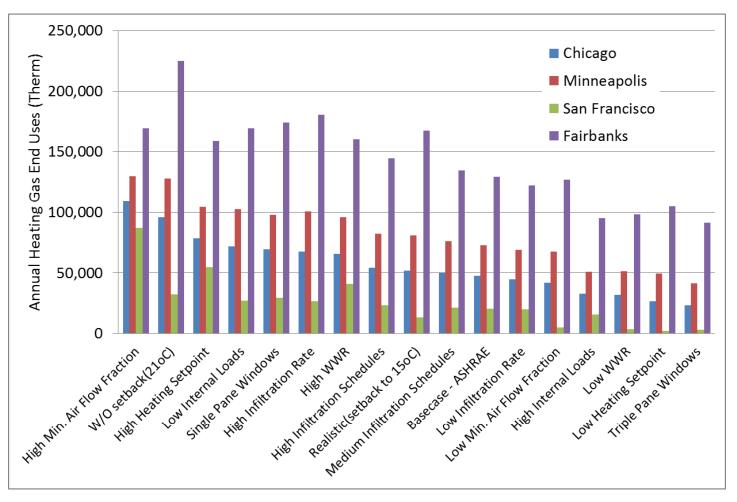
U.S. Buildings Energy End-Use Splits

Total: 20.33 Total: 41.04

Data Source: USDOE 2010 Buildings Energy Databook

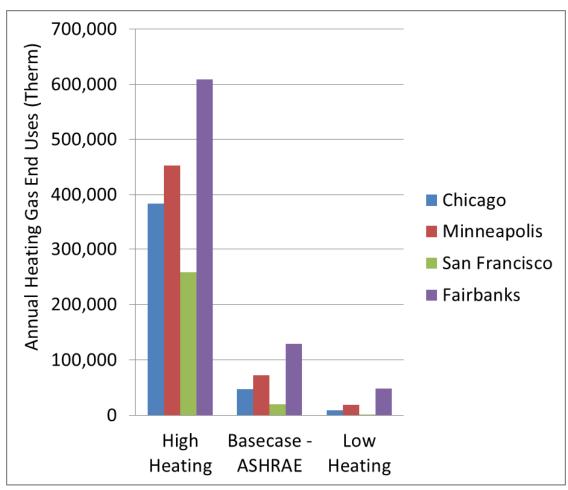
Methodology

- Simulations with EnergyPlus Version 6
- Use the large and small-size office buildings from USDOE CRBs
- 4 Climates: San Francisco, Chicago, Minneapolis, Fairbanks
- Select a few parameters that have the most potential impact on space heating
- Benchmark with data from CBECS, CEUS, HPB

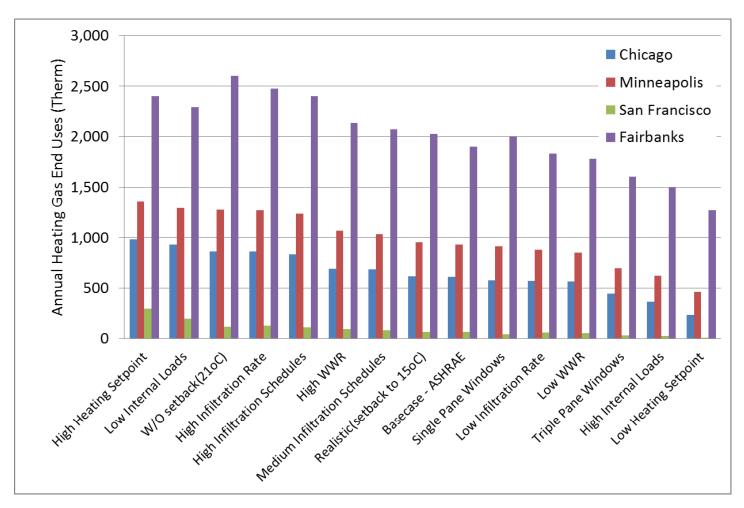

Key Parameters (1)

Description	LPD	EPD	WWR	INF	INFSCH	MAFF	Heating	Thermostat
	(W/m^2)	(W/m^2)	(Large/Small	$(m^3/s-m^2)$		(Large	setpoint (°C)	Setback (°C)
			Office)	(ach)		Office)		
Basecase	10.76	10.76	0.4/0.2	0.000302	0.25	0.3	21	10
				(0.65 ach)				
High Internal	16.14	16.14	0.4/0.2	0.000302	0.25	0.3	21	10
Loads (50%				(0.65				
higher)				ach)				
Low Internal	5.38	5.38	0.4/0.2	0.000302	0.25	0.3	21	10
Loads (50%				(0.65				
lower)				ach)				
High WWR	10.76	10.76	0.68/0.4	0.000302	0.25	0.3	21	10
				(0.65 ach)				
Low WWR	10.76	10.76	0.1/0.1	0.000302	0.25	0.3	21	10
				(0.65 ach)				
High Infiltration	10.76	10.76	0.4/0.2	0.001133	0.25	0.3	21	10
Rate				(2.44ach)				
(105% higher)								
Low Infiltration	10.76	10.76	0.4/0.2	0.000189	0.25	0.3	21	10
Rate				(0.407				
(50% lower)				ach)				
High	10.76	10.76	0.4/0.2	0.000302	1	0.3	21	10
Infiltration				(0.65				
Medium	10.76	10.76	0.4/0.2	0.000302	0.5	0.3	21	10
Infiltration				(0.65				
Schedules				ach)				
High Minimum	10.76	10.76	0.4/0.2	0.000302	0.25	0.5	21	10
Air Flow Fraction				(0.65 ach)				
(Large office)								
Low Minimum	10.76	10.76	0.4/0.2	0.000302	0.25	0.15	21	10
Air Flow Fraction				(0.65 ach)				
(Large office)								

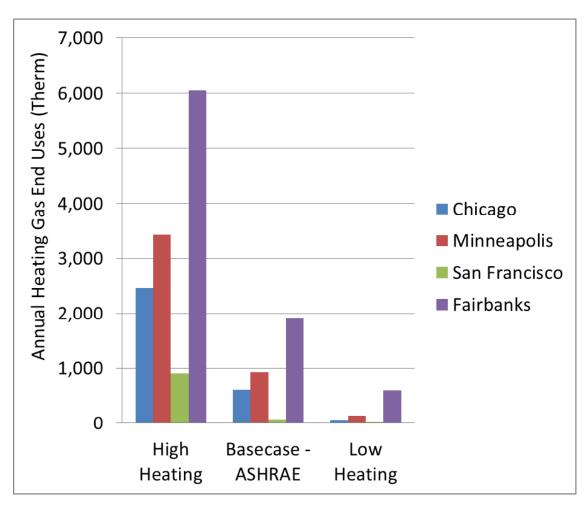
Key Parameters (2)


Description	LPD (W/m²)	EPD (W/m²)	WWR (Large/Small Office)	INF $(m^3/s-m^2)$ (ach)	INFSCH	MAFF (Large Office)	Heating setpoint (°C)	Thermostat Setback (°C)
Basecase	10.76	10.76	0.4/0.2	0.000302 (0.65 ach)	0.25	0.3	21	10
High Heating Setpoint	10.76	10.76	0.4/0.2	0.000302 (0.65 ach)	0.25	0.3	23	10
Low Heating Setpoint	10.76	10.76	0.4/0.2	0.000302 (0.65 ach)	0.25	0.3	18	10
Single Pane Windows	10.76	10.76	0.4/0.2	0.000302 (0.65 ach)	0.25	0.3	21	10
Triple Pane Windows	10.76	10.76	0.4/0.2	0.000302 (0.65 ach)	0.25	0.3	21	10
Thermostat setback to15°C	10.76	10.76	0.4/0.2	0.000302 (0.65 ach)	0.25	0.3	21	15
Thermostat no setback	10.76	10.76	0.4/0.2	0.000302 (0.65 ach)	0.25	0.3	21	21
Wall/roof pre-1980	10.76	10.76	0.4/0.2	0.000302 (0.65 ach)	0.25	0.3	21	10
Wall/roof post-1980	10.76	10.76	0.4/0.2	0.000302 (0.65 ach)	0.25	0.3	21	10
High Heating	5.38	5.38	0.68/0.4	0.000604 (1.3 ach)	1	0.5	23	15
Low Heating	16.14	16.14	0.1/0.1	0.000151 (0.326 ach)	0.25	0.15	18	10

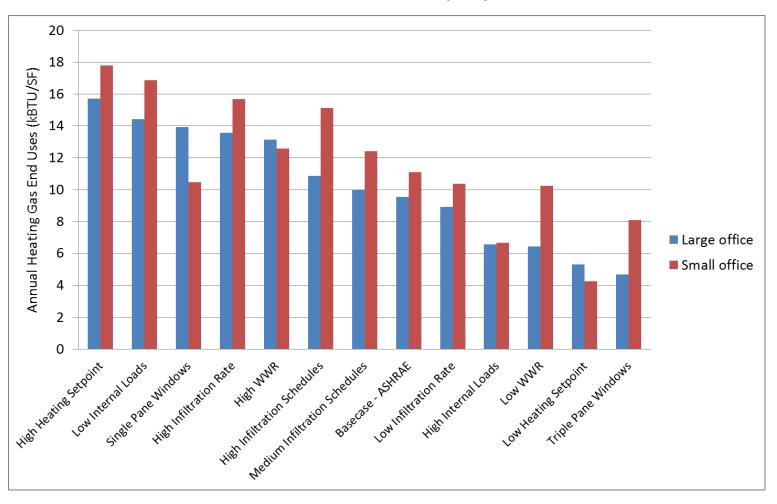
Results (1)


Space heating energy use of the large office building

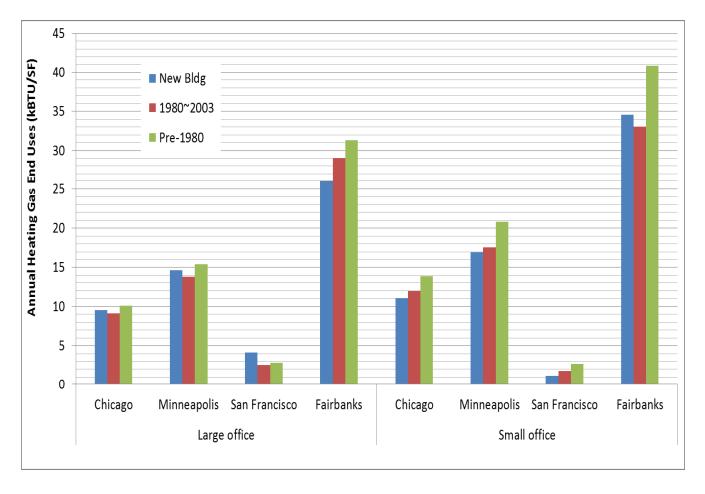
Results (2)


Space heating energy use of the large office building

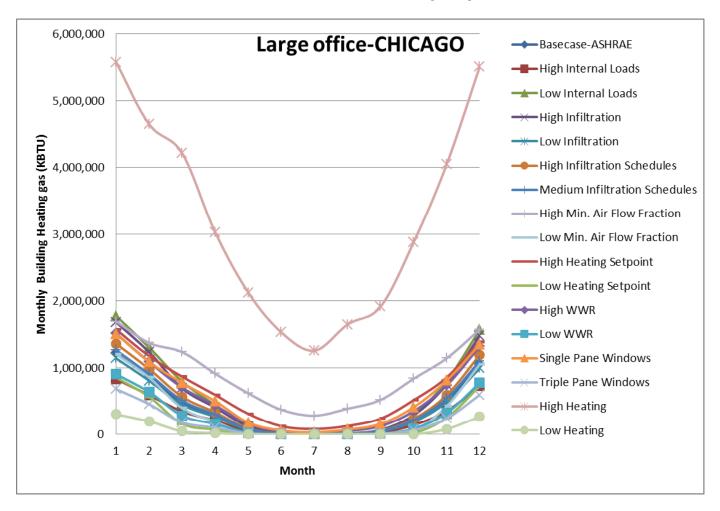
Results (3)


Space heating energy use of the small office building

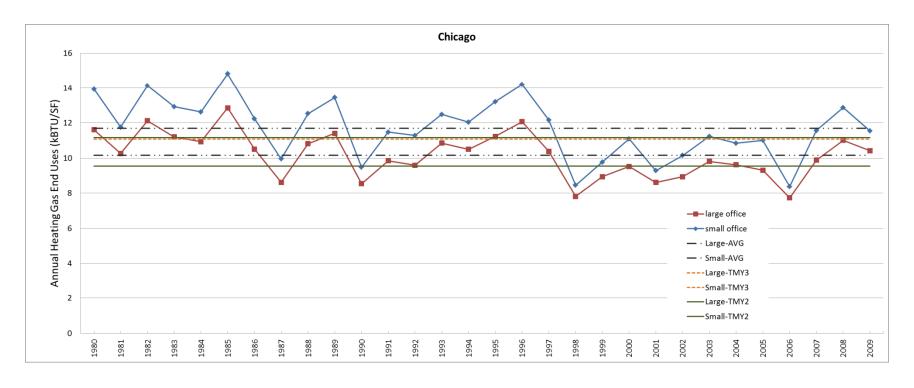
Results (4)


Space heating energy use of the small office building

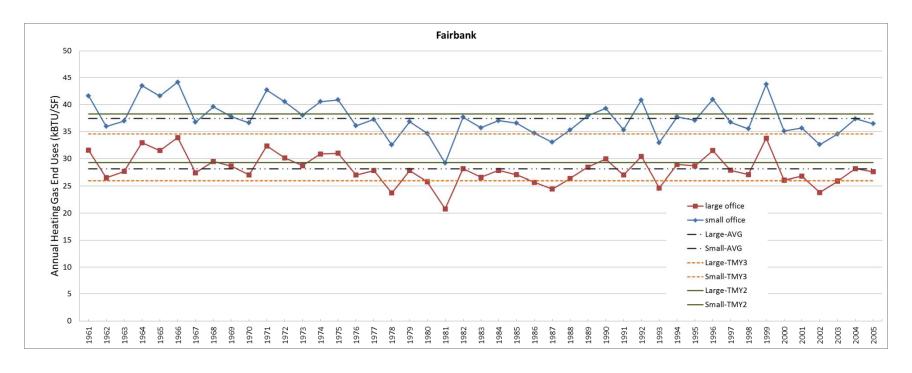
Results (5)


Space heating EUI in Chicago

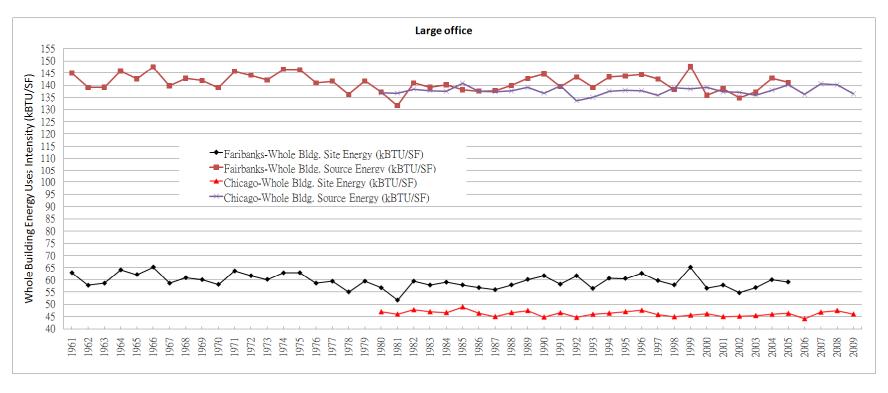
Results (6)


Space heating EUI at different building periods

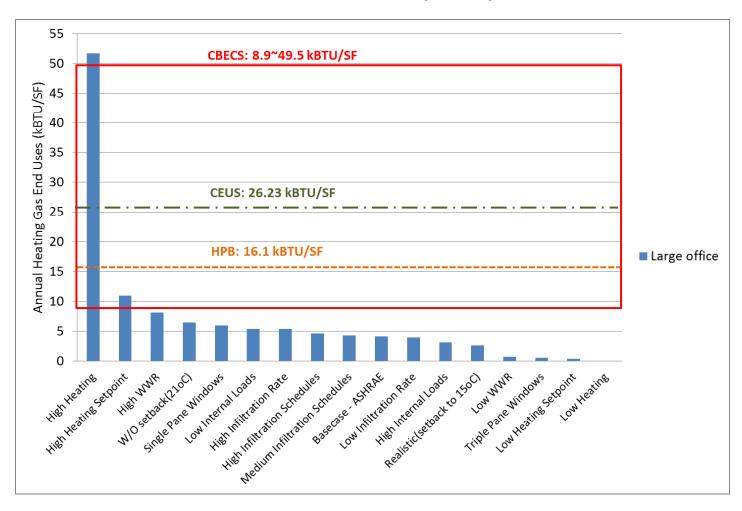
Results (7)


Monthly space heating gas use for the large office in Chicago

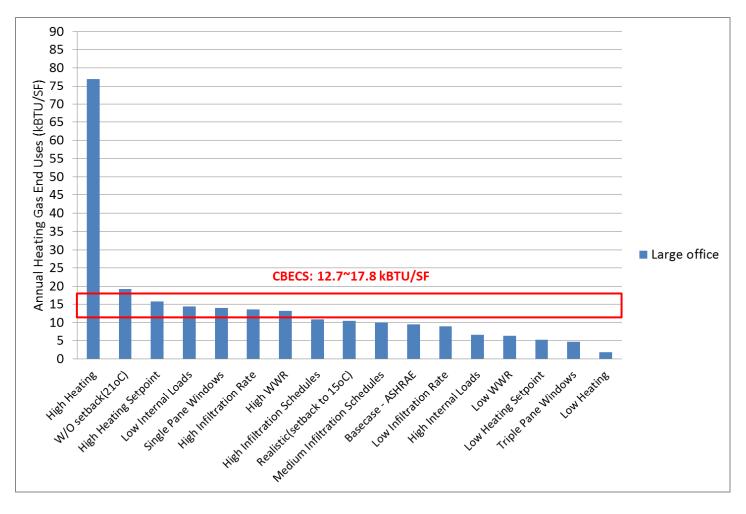
Results (8)


Space heating EUI, Chicago, 1980 to 2009

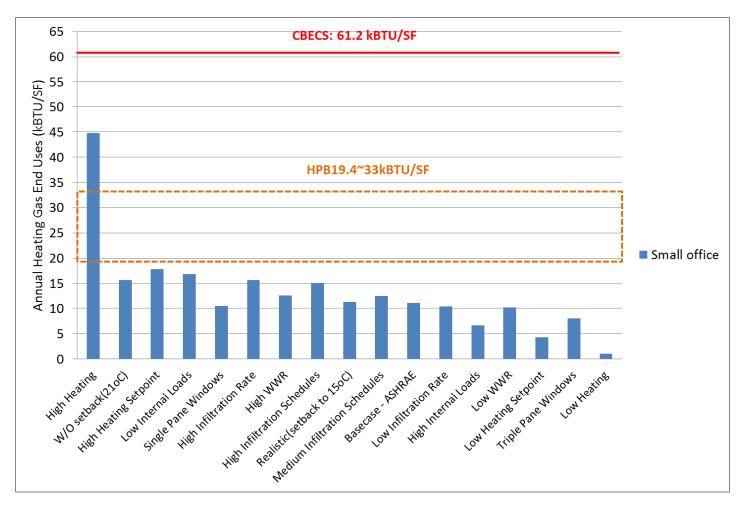
Results (9)


Space heating EUI, Fairbanks, 1961 to 2005

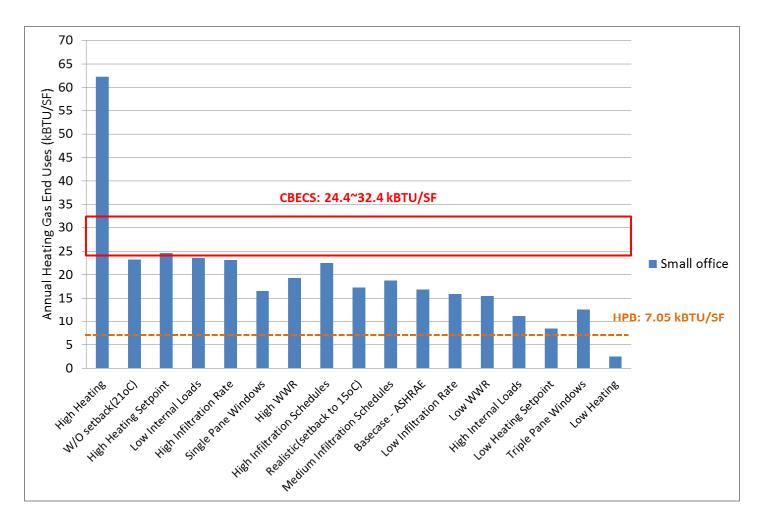
Results (10)


Whole Building EUI for the large office, Chicago and Fairbanks

Results (11)


Space heating EUI for the large office in San Francisco

Results (12)


Space heating EUI for the large office in Chicago

Results (13)

Space heating EUI for the small office in Chicago

Results (14)

Space heating EUI for the small office in Minneapolis

Conclusions

- Space heating energy use can vary widely depending on a few key inputs
 - Minimum damper position of VAV box
 - Heating setback
 - Heating temperature setpoint
 - Infiltration rate and schedule
 - Window construction type and window area
 - Internal loads
 - Weather data
- The large and small office buildings from the DOE CRBs may underestimate space heating energy use due to the use of:
 - Small infiltration rate
 - Ideal infiltration schedule
 - Ideal heating setback
 - TMY2 weather data

Better Simulation – Engine (1)

Evolving simulation engines that

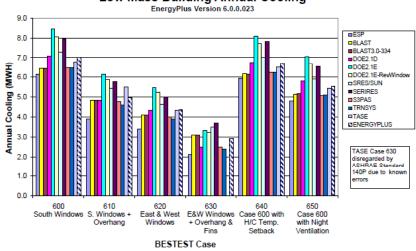
- Can easily add or enhance modeling capability
- Can model equipment faults and operation problems
- Better handle human behavior
- Communicate with other engines

Enhancements to EnergyPlus

- Dynamic windows thermochromic, electrochromic
- Shading controls
- Daylighting controls
- VAV controls
- Code compliance CA Title 24, ASHRAE 90.1
- Demand controlled ventilation
- Adaptive comfort
- Model HVAC faults

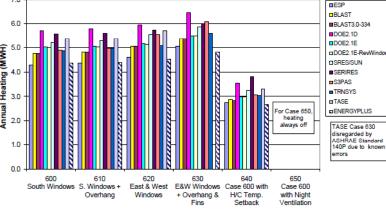
Unconventional Systems

- Smart facades
- Demand response
- Solar-powered heating and cooling systems
- Radiant cooling and heating systems
- Ground source heating and cooling systems
- Natural ventilation and mixed-mode
- Integrated controls strategies


Better Simulation - Engine (2)

Testing and Validations – EnergyPlus

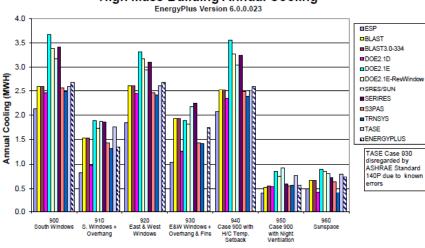
- Analytical tests:
 - HVAC tests, based on ASHRAE Research Project 865
 - Building fabric tests, based on ASHRAE Research Project 1052
- Comparative tests:
 - ANSI/ASHRAE Standard 140
 - IEA BESTEST
 - EnergyPlus HVAC Component Comparative tests
 - EnergyPlus Global Heat Balance tests
- Release and executable tests
- Empirical tests very limited, not adequate!


ASHRAE Standard 140 Tests

Standard 140-2007 Comparison Low Mass Building Annual Cooling

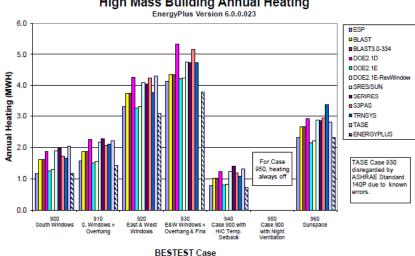
TASE Case 930

140P due to known



Standard 140-2007 Comparison

Low Mass Building Annual Heating


EnergyPlus Version 6.0.0.023

Standard 140-2007 Comparison **High Mass Building Annual Cooling**

Standard 140-2007 Comparison High Mass Building Annual Heating

BESTEST Case

BESTEST Case

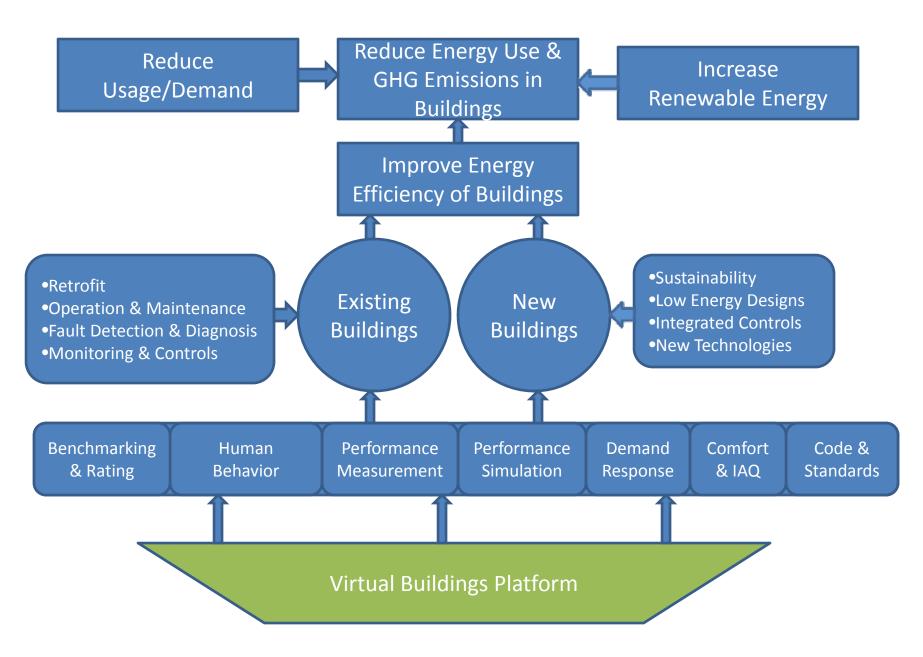
Better Simulation - Platform

- Integrated Simulation Platform
 - A key part of the Virtual Buildings Platform
 - Various tools for different applications
 - Different design phases
 - Built on BIM (Building Information Modeling)
 - Parametric runs and optimization to support design decisions
 - Visualization, "seeing is believing", better communicates
 - Real time simulation (LBNL BCVTB)
 - Continuous calibration of models
 - Built-in quality controls
 inputs, outputs, simulation process

Better Simulation - Standards

Develop standards of building performance simulation

- modeling procedures + resources + reporting + testing (COMNET/RESNET)
- quality controls
- Equipment performance data (ASHRAE GPC 205)
- BIM


Better Simulation - Modelers

Professional Modelers

- Education
- Training
- Certification ASHRAE BEMP
- Resources

Smart Tools, Dumb Modelers? No!

<u>Professional Modelers with Good Tools!</u> YES!

Research Portfolio of Energy Efficiency in Buildings

Sitert-Øksendal (1985)

"We have not succeeded in answering all our problems. The answers we have found only serve to raise a whole set of new questions. In some ways we feel we are as confused as ever, but we believe we are confused on a higher level and about more important things..."